Low-level Vision for Resource-limited Devices

IAGO SUÁREZ

IAGO.SUAREZ@THEGRAFFTER.COM UNIVERSIDAD POLITÉCNICA DE MADRID THE GRAFFTER S.L.

Visual abstract

4. Local feature description

Index

- 0. Abstract
- **1.** Introduction
- 2. Line segment detection
- 3. Full line detection and vanishing point estimation
- 4. Local feature description
- 5. Industrial results
- 6. Conclusions

Computer Vision is ubiquitous

Accuracy vs resources curve

Accuracy vs resources curve

CV opportunities:

- IoT
- Drones
- Robotics
- Smartphones

Limited resources:

- Restricted-CPU, no-GPU
- Drones: Fly time
- Smartphones: App. consumption
- AR glasses: Time of usage and heat

Mixed Reality (MR) in the street

Visual navigation guidelines

Accurate location-based information

Mixed Reality (MR) in the street

Successful examples in recent years:

Pokemon Go

Google Street View

The Graffter: Urban Mixed Reality

MIXED REALITY IN THE BUILDING FAÇADES

The Graffter: Urban Mixed Reality

We face the image matching problem in mobile devices

Urban MR Challenges

It seems very easy!

Urban MR Challenges: Building façade repeatability

Where is this window?

We need extra knowledge to locate repetitive patterns

Urban MR Challenges: Perspective and lighting

Urban MR Challenges: Lack of texture

Texture-less building

Glazed surfaces

Localization pipeline: Local features

Blobs

Corners

Line segments

Localization pipeline: Local features

Blobs

Corners

Line segments

Localization pipeline: Local features

Blobs

Corners

Line segments

graffte

Obj. pose estimation (Hu 2019)

Simultaneous Localization And Mapping (SLAM)

In this presentation...

1. The Graffter S.L and the industry, match corners to recognize buildings

In this presentation...

- 1. The Graffter S.L and the industry, match corners to recognize buildings
 - There is room for improvements in the performance of this matching → Improve the matching techniques for corner

In this presentation...

- 1. The Graffter S.L and the industry, match corners to recognize buildings
 - There is room for improvements in the performance of this matching → Improve the matching techniques for corner
- 2. Some scenes have nearly no corners, only lines
 - Matching lines is harder than corners, more repetitiveness and lack of texture
 - Instead of failing with repetitiveness, we take advance of it → We make contributions to a matching-free pipeline:

Index

- 0. Abstract
- 1. Introduction

2. Line segment detection

- 3. Full line detection and vanishing point estimation
- 4. Local feature description
- 5. Industrial results
- 6. Conclusions

Lines and segments: definition

Segments

Lines

Line segment detection with Hough Transform

- Hough Transform (HT) (Hough, 1962)
- Probabilistic Hough Transform (Matas, J., 2000)
- Kernel-Based Hough Transform (Fernandes, 2008)
- MCMLSD (Almazan, 2017)

(Zhou2019)

Wireframe parsing approaches

They predict the line segment endpoints in the borders of relevant objects:

- Human-labeled data
- Limited to home scenes
- HAWP (Xue, 2020)
- LETR (Xu, 2021)
- ELSD (Zhang, 2021)
- F-Clip (Dai, 2021)

General purpose line segment detectors

Edge Drawing

Akinlar, C., & Topal, C. (2011). EDLines: A real-time line segment detector with a false detection control. *Pattern Recognition Letters*, 32(13), 1633-1642.

Edge Drawing

Akinlar, C., & Topal, C. (2011). EDLines: A real-time line segment detector with a false detection control. *Pattern Recognition Letters*, 32(13), 1633-1642.

In ELSED we propose to **merge**:

- 4) Edge drawing
- 5) Line segment fitting

Suárez, I., Buenaposada, J. M., & Baumela, L. (2021). ELSED: Enhanced Line SEgment Drawing. Submitted to Pattern Recognition

Because we are merging both steps, we can take advantage of it to improve the drawing process

Because we are merging both steps, we can take advantage of it to improve the drawing process

Because we are merging both steps, we can take advantage of it to improve the drawing process

Horizontal current edge pixel **Go Right**

Diagonal case with vertical edge **Go Right**

Because we are merging both steps, we can take advantage of it to improve the drawing process

Common case

Horizontal current edge pixel **Go Right**

Diagonal case with vertical edge **Go Right**

Enhanced Edge Drawing (EED)

Diagonal case with vertical edge **Go Right**

ELSED: Jump over discontinuities

(a) Original Image

(b) Blurred Image gradient

(h) Detected edges

(d) Discontinuity detection

(i) Detected Segments

(e) First discontinuity check

(g) 2nd discontinuity check

Line segment validation

Discarding the worst detections

Results: Line segment detection

ELSED obtains the best results among fast detectors, being competitive with slow methods

Results: Repeatability

The previous metric depends on the hand-labeled segments of the scene.

$$\text{repeatability} = \frac{\sum_{i,j\in\mathbb{A}^*} \mathbf{x}_i^{\mathcal{A}} \cap_{\mathbf{x}_i^{\mathcal{A}}} \mathbf{x}_j^{\mathcal{A}|\mathcal{B}}}{\sum_i |\mathbf{x}_i^{\mathcal{A}}| + \sum_j \left|\mathbf{x}_j^{\mathcal{A}|\mathcal{B}}\right|} + \frac{\sum_{i,j\in\mathbb{B}^*} \mathbf{x}_i^{\mathcal{B}} \cap_{\mathbf{x}_i^{\mathcal{B}}} \mathbf{x}_j^{\mathcal{B}|\mathcal{A}}}{\sum_i |\mathbf{x}_i^{\mathcal{A}}| + \sum_j \left|\mathbf{x}_j^{\mathcal{A}|\mathcal{B}}\right|}$$

graffter PCR
ELSED: The fastest detector

Moreover, ELSED is extremely fast

This also provides state-of-the-art results in the accuracy-vs-speed curve. In fact, ELSED is the fastest detector

Method	Intel Core i7	Snapdragon	Exynox
LSD	$36.51 (\pm 1.60)$	$58.68 (\pm 0.81)$	$390.91 (\pm 0.92)$
EDLines	$7.64 \ (\pm 0.33)$	$13.79 (\pm 0.15)$	$65.79 (\pm 0.16)$
AG3line	$13.04 (\pm 0.76)$	$18.57 (\pm 0.20)$	$100.54 (\pm 0.19)$
ELSED-NJ	$4.18~(\pm 0.23)$	$8.28~(\pm 0.03)$	45.84 (±0.02)
ELSED	$5.38 (\pm 0.30)$	$10.20 \ (\pm 0.07)$	59.99 (±0.16)
MCMLSD	4.68K (±1.78K)	GeForce GTX 1050	
Linelet	20.9K (±10.1K)		
HAWP	$12.4K (\pm 0.8K)$	212.25	(± 8.35)
$SOLD^2$	$3.17K (\pm 0.52K)$	417.72 (±6.78)	
F-Clip HR	7.94K (±0.15K)	$47.39 (\pm 1.46)$	
F-Clip HG1	6.78K (±0.22K)	$11.00 (\pm 0.47)$	

ELSED: The fastest detector

Moreover, ELSED is extremely fast

This also provides state-of-the-art results in the accuracy-vs-speed curve. In fact, ELSED is the fastest detector

Index

- 0. Abstract
- 1. Introduction
- 2. Line segment detection
- 3. Full line detection and vanishing point estimation
- 4. Local feature description
- 5. Industrial results
- 6. Conclusions

Vanishing Point Estimation: Definition

"A vanishing point is a point on the image plane where the two-dimensional perspective projections of mutually parallel lines in threedimensional space appear to converge"

They arise in the so-called: Manhattan World

pinterest.es/pin/310044755583385782

Vanishing Point Estimation

Vanishing Point Estimation: Other applications

Plane rectification via partial inertial parameters

Single view reconstruction

Previous work: Grouping lines approaches

Heuristic based:

- (Jang 2002) Fast line segment grouping method for finding globally more favorable line segments.
- (Zuo, 2017) Robust visual SLAM with point and line features
 - Group two segments if some distances from their middle and end points are small.
- (Yang, 2017) Direct monocular odometry using points and lines
 - Organize the candidates into buckets with similar middle point locations and orientations.

Previous work: Grouping lines approaches

Heuristic based:

- (Jang 2002) Fast line segment grouping method for finding globally more favorable line segments.
- (Zuo, 2017) Robust visual SLAM with point and line features
 - Group two segments if some distances from their middle and end points are small.
- (Yang, 2017) Direct monocular odometry using points and lines
 - Organize the candidates into buckets with similar middle point locations and orientations.
- (Bandera, 2006) Mean shift based clustering of Hough domain for fast line segment detection.

Previous work: Grouping lines approaches

Heuristic based:

- (Jang 2002) Fast line segment grouping method for finding globally more favorable line segments.
- (Zuo, 2017) Robust visual SLAM with point and line features
 - Group two segments if some distances from their middle and end points are small.
- Yang, 2017) Direct monocular odometry using points and lines
 - Organize the candidates into buckets with similar middle point locations and orientations.
- (Bandera, 2006) Mean shift based clustering of Hough domain for fast line segment detection.
- Probabilistic models use the a contrario methodology:
 - (Lezama, 2014) Finding Vanishing Points via Point Alignments in Image Primal and Dual Domains
 - (Rajaei, 2018) Gestaltic grouping of line segments

FSG: A statistical approach to line detection via fast segments grouping

LINE HYPOTHESIS GENERATION

LINE VALIDATION CRITERIA

Suárez, I., Muñoz, E., Buenaposada, J. M., & Baumela, L. (2018, October). FSG: A statistical approach to line detection via fast segments grouping. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 97-102). IEEE.

LOW-LEVEL VISION FOR RESOURCE-LIMITED DEVICES

FSG: Line hypothesis generation

FSG: Line hypothesis generation

FSG: Line hypothesis generation

Initial line segments (VonGioi, 2010)

Resulting lines

FSG: Statistical Validator

• We propose a statistical validator to check whether a group of segments is well aligned

FSG: Statistical Validator

In an image with s segments. We evaluate the probability that a set of c segments from H fall into B.

$$\mathbb{E}_H(\mathcal{S}, \mathcal{C}_s) = \binom{s}{c} P[\mathcal{C}_h \in B],$$

FSG: Statistical Validator

 In an image with s segments. We evaluate the probability that a set of c segments from H fall into B.

$$\mathbb{E}_{H}(\mathcal{S}, \mathcal{C}_{s}) = \binom{s}{c} P[\mathcal{C}_{h} \in B],$$

Product of the probability of each segment to fall into B:

Robust Vanishing point from lines

- Accurate vanishing point estimator (Lezama, 2014)
- Fast vanishing point estimator (based on RANSAC) (Zhang, 2016)

Evaluation of horizon line estimation

We evaluate the estimated vanishing points with the standard metric Horizon line error:

Evaluation of horizon line estimation

We evaluate the estimated vanishing points with the standard metric Horizon line error:

Quantitative Results

- Segments Grouped at 6 ms/frame (Intel core i7) with state-of-the-art accuracy
- Cumulative error distribution:

Local Segments Detectors			
LSD	ELSED		
36.51 ms	5.38 ms		

Segments Grouping Algorithms		
FSG	(Lezama 2014)	
5.89 ms	14961 ms	

Global Segment Detectors			
РРТН	MCMLSD		
21.63 ms	4686 ms		

Qualitative results (Smartphone)

Index

- 0. Abstract
- 1. Introduction
- 2. Line segment detection
- 3. Full line detection and vanishing point estimation
- 4. Local feature description
- 5. Industrial results
- 6. Conclusions

Previous work: SIFT Descriptor

SIFT (Lowe, 1999) is the most widely used descriptor:

Previous work: SIFT Descriptor

• Uses the histograms of gradients in a fixed grid:

Previous work: SIFT Descriptor

Uses the histograms of gradients in a fixed grid:

Gradient orientation histograms:

- Fixed grid: 2 x 2
- Fixed scale: The cell size
- **Dense**: Uses all patch pixels

Previous work: Inefficient learnt descriptors

Instead of fixing the grid, the scale and the gradient as information, this can be learnt:

https://tenor.com/view/battery-phone-drain-gif-11086262

Deep Learning descriptors Tfeat, L2Net, DOAP, HardNet, SOSNet, CDbin

Efficient alternatives to SIFT are based in **approximate gradient by comparing pixel intensities**

• Sparse approach \rightarrow Fast

Computed descriptor

Computed descriptor

Computed descriptor

BRISK

Efficient descriptors comparison

Leutenegger, S., Chli, M., & Siegwart, R. (2011). BRISK: Binary robust invariant scalable keypoints. In ICCV (pp. 2548-2555).

Efficient descriptors comparison

Calonder, M., Lepetit, V., Strecha, C., & Fua, P. (2010, September). Brief: Binary robust independent elementary features. In ECCV (pp. 778-792).

Efficient descriptors comparison

Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. R. (2011, November). ORB: An efficient alternative to SIFT or SURF. In ICCV (Vol. 11, No. 1, p. 2).

Efficient descriptors: Measurement function

The proposed measurement functions learn not only the description pattern but also the description scale

Efficient descriptors: Measurement function

The **Thresholded Average Box measure** that learns both:

- Descriptor Pattern
- Descriptor Measurements Scale

Suárez, I., Sfeir, G., Buenaposada, J. M., & Baumela, L. (2019, July). BELID: Boosted efficient local image descriptor. In *Iberian Conference on Pattern Recognition and Image Analysis* (pp. 449-460). Springer, Cham.

The measurement function is the **difference of the average gray level in two boxes**

 \mathbf{X}

Patch to describe

The measurement function is the **difference of the average gray level in two boxes**

 \mathbf{X}

Each measurement function is **thresholded** to obtain the weak-descriptors.

How to select a good set of measurement functions?

Distance is description space: Similarity learning

Winder, S. A., & Brown, M. (2007, June). Learning local image descriptors. In Proc. CVPR (pp. 1-8)

How to select a good set of measurement functions?

How to select a good set of measurement functions?

Suárez, I., Sfeir, G., Buenaposada, J. M., & Baumela, L. (2019, July). BELID: Boosted efficient local image descriptor. In *Iberian Conference on Pattern Recognition and Image Analysis* (pp. 449-460). Springer, Cham.

BELID: Boosting training process

BELID: Boosting training process

Training on Brown Balanced Dataset (Winder, 2007). We define our descriptors as:

$$\mathbf{h}(\mathbf{x}) = \left[\sqrt{\alpha_1}h_1(\mathbf{x}), \dots, \sqrt{\alpha_K}h_K(\mathbf{x})\right]$$

BELID: Boosting training process

Training on Brown Balanced Dataset (Winder, 2007). We define our descriptors as:

$$\mathbf{h}(\mathbf{x}) = \begin{bmatrix} \sqrt{\alpha_1} h_1(\mathbf{x}), \dots, \sqrt{\alpha_K} h_K(\mathbf{x}) \end{bmatrix}$$

And we train in a binary classification problem:

$$C: (\mathbf{x}, \mathbf{y}) \to sign \left(\alpha_1 c_1(\mathbf{x}, \mathbf{y}) + \ldots + \alpha_K c_K(\mathbf{x}, \mathbf{y}) \right) \to \pm 1$$

$$+1 / -1$$

$$c_i(\mathbf{x}, \mathbf{y}) = h_i(\mathbf{x}) \cdot h_i(\mathbf{y})$$

$$-1 \qquad -1 \qquad +1$$

The Boosting framework: 1st WL

The Boosting framework: 1st WL

The Boosting framework: 2nd WL

Training dataset

 Find the weak-learner h that maximizes the Youden's index.

| 2. Calculate the error
|
$$\epsilon_1 = \sum_{\substack{i=1\\c_1(\mathbf{x}_i, \mathbf{y}_i) \neq l_i}} w_{i,1}$$

3. Choose the **h** weight: $\alpha_1 = \frac{1}{2} \ln \left(\frac{1 - \epsilon_1}{\epsilon_1} \right)$

4. Re-weight the samples: $w_{i,2} = w_{i,1}e^{-l_i\alpha_1c_1(\mathbf{x}_i,\mathbf{y}_i)}$

The Boosting framework: 2nd WL

The Boosting framework: 3rd WL

The Boosting framework

BELID: Result of the training process

Selected measurement regions

Heatmap of the weighted measurement regions

Training results for 512 weak-learners

BELID: Final projection

Linear Transformation:

- Give more weight to the best h(x).
- Models the correlation between the h's.

BELID Evaluation results: Hpatches

Hpatches is a multitask dataset of patches:

(Balntas, 2017)

Results for the verification task:

graffter PCR

How to select a good set of measurement functions?

Suárez, I., Sfeir, G., Buenaposada, J. M., & Baumela, L. (2020). BEBLID: Boosted efficient binary local image descriptor. *Pattern Recognition Letters*, *133*, 366-372.

BEBLID: Descriptor binarization

To speed up the description and binarize the result, we remove B

BEBLID: Descriptor binarization

To speed up the description and binarize the result, we remove B

BEBLID: Descriptor binarization

To speed up the description and binarize the result, we remove B

- How to find the optimal threshold T_1 ?
 - Let's plot the values of the measurement function

- How to find the optimal threshold T_1 ?
 - Let's plot the values of the measurement function

- How to find the optimal threshold T_1 ?
 - Let's plot the values of the measurement function

- How to find the optimal threshold T_1 ?
 - Let's plot the values of the measurement function

- How to find the optimal threshold T_1 ?
 - Let's plot the values of the measurement function

• How to find the optimal threshold T_1 ?

PCR

POLITÉCNICA

Let's plot the values of the measurement function

BEBLID: Learning an unbalanced problem

Image matching and Patch retrieval are highly unbalanced problems:

We change the training data set balance \rightarrow 20% positive patch pairs, 80% negatives

Evaluation metric: Image matching mAP

Balntas, V., Lenc, K., Vedaldi, A., & Mikolajczyk, K. (2017). HPatches: A benchmark and evaluation of handcrafted and learned local descriptors. In *Proceedings of CVPR* (pp. 5173-5182). Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. *IEEE TPAMI*, *27*(10), 1615-1630.

BEBLID: HPatches results

We improve our BELID results in Matching and retrieval

Method	Size	Intel Core i7 8750H	Exynox Octa S	Snapdragon 855
BRISK	512b	$14.94 \ (\pm 0.31)$	$164.75 (\pm 4.10)$	$19.38 (\pm 0.19)$
ORB	256b	$12.07~(\pm 0.33)$	$100.04~(\pm 1.16)$	$16.40 \ (\pm 0.25)$
LDB	256b	$17.48~(\pm 0.8)$	$161.30~(\pm 4.44)$	$27.32 (\pm 0.11)$
LATCH	512b	$101.89~(\pm 1.67)$	$1509.66~(\pm 24.35)$	$159.02 \ (\pm 0.24)$
<u>BEBLID</u>	256b	$1.56~(\pm 0.05)$	$20.04~(\pm 0.31)$	$4.75~(\pm 0.06)$
<u>BEBLID</u>	512b	$2.84~(\pm 0.07)$	$31.62~(\pm 0.26)$	$7.18 (\pm 0.21)$

Description times

cv::xfeatures2d::BEBLID Class Reference

Extra 2D Features Framework » Experimental 2D Features Algorithms

Class implementing BEBLID (Boosted Efficient Binary Local Image Descriptor), described in [232] . Mo

#include <opencv2/xfeatures2d.hpp>

Inheritance diagram for cv::xfeatures2d::BEBLID:

BEBLID: OpenCV

THE DESCRIPTOR HAS BEEN ADDED TO OPENCV!

How to select a good set of measurement functions?

Suárez, I., Buenaposada, J. M., & Baumela, L. (2021). Revisiting Binary Local Image Description for Resource Limited Devices. *IEEE Robotics and Automation Letters*, *6*(4), 8317-8324.

$$\mathcal{L}_{\text{Adaboost}} = \sum_{i=1}^{N} \exp\left[-\gamma l_i \mathcal{S}(\mathbf{x}_i, \mathbf{y}_i)\right]$$

$$\mathcal{L}_{\text{Adaboost}} = \sum_{i=1}^{N} \exp\left[-\gamma l_i \mathcal{S}(\mathbf{x}_i, \mathbf{y}_i)\right]$$

$$\mathcal{L}_{\text{Adaboost}} = \sum_{i=1}^{N} \exp\left[-\gamma l_i \mathcal{S}(\mathbf{x}_i, \mathbf{y}_i)\right]$$

$$\mathcal{L}_{\text{Adaboost}} = \sum_{i=1}^{N} \exp\left[-\gamma l_i \mathcal{S}(\mathbf{x}_i, \mathbf{y}_i)\right]$$

$$\mathcal{L}_{\text{Adaboost}} = \sum_{i=1}^{N} \exp\left[-\gamma l_i \mathcal{S}(\mathbf{x}_i, \mathbf{y}_i)\right]$$

Wrongly classified example

$$\mathcal{L}_{\text{Adaboost}} = \sum_{i=1}^{N} \exp\left[-\gamma l_i \mathcal{S}(\mathbf{x}_i, \mathbf{y}_i)\right]$$

Outliers gain weight exponentially

$$\mathcal{L}_{\text{Hinge}} = \sum_{i=1}^{N} \max \left[0, \tau - l_i \mathcal{S}(\mathbf{x}_i, \mathbf{y}_i) \right]$$

Hinge (contrastive) loss is more robust

Triplet ranking loss VS contrastive loss

Contrastive pairwise loss

$$\mathcal{L}_{\text{Contrastive}} = \sum_{i=1}^{N} \max\left[0, \tau - l_i \mathcal{S}(\mathbf{x}_i, \mathbf{y}_i)\right]$$

Triplet ranking loss VS contrastive loss

$$\mathcal{L}_{\text{Contrastive}} = \sum_{i=1}^{N} \max \left[0, \tau - l_i \mathcal{S}(\mathbf{x}_i, \mathbf{y}_i) \right]$$

Triplet ranking loss VS contrastive loss

$$\mathcal{L}_{\text{TLR}} = \sum_{i=1}^{N} \max\left[0, \tau - \mathcal{S}\left(\mathbf{a}_{i}, \mathbf{p}_{i}\right) + \mathcal{S}\left(\mathbf{a}_{i}, \mathbf{n}_{i}\right)\right]$$

Hard Negative Mining (HNM) and anchor swap

Select meaningful triplets is very important!

$$\mathcal{L}_{\text{TLR}} = \sum_{i=1}^{N} \max\left[0, \tau - \mathcal{S}\left(\mathbf{a}_{i}, \mathbf{p}_{i}\right) + \mathcal{S}\left(\mathbf{a}_{i}, \mathbf{n}_{i}\right)\right]$$

Hard Negative Mining (HNM) and anchor swap

- Select meaningful triplets is very important!
- We choose the hardest negative in a batch of 256 samples.
 - Distance: Hamming Norm of the current descriptors -> Progressively harder triplets
 - Anchor swap: if the negative is closer to the positive than to the anchor, we swap them

Triplet ranking loss (TRL) \mathbf{p}_i

Description space

$$\mathcal{L}_{\text{TLR}} = \sum_{i=1}^{N} \max\left[0, \tau - \mathcal{S}\left(\mathbf{a}_{i}, \mathbf{p}_{i}\right) + \mathcal{S}\left(\mathbf{a}_{i}, \mathbf{n}_{i}\right)\right]$$

(Schroff, 2015)

In BAD we use a greedy scheme like in boosting, but we now select the features that directly optimize the loss function: Algorithm 4Feature selection algorithmInput: \mathcal{P} , patches with 3D point class labelOutput: $\mathbf{h} = [h_1, ..., h_K]$

In BAD we use a greedy scheme like in boosting, but we now select the features that directly optimize the loss function: Algorithm 4 Feature selection algorithm **Input:** \mathcal{P} , patches with 3D point class label **Output:** $h = [h_1, ..., h_K]$ 1: $\mathbf{h} := \emptyset$ 2: for all k = 1, ..., K do 3: 4: 5: 6: 7: Select one weak-descriptor (thresholded average box measure) 8: 9: h_k 10: 11: 12: $\mathbf{h} := \mathbf{h} \cup h_k$ 13:14: **end for** 15: return h

In BAD we use a greedy scheme like in boosting, but we now select the features that directly optimize the loss function: Algorithm 4 Feature selection algorithm **Input:** \mathcal{P} , patches with 3D point class label **Output:** $h = [h_1, ..., h_K]$ 1: $\mathbf{h} := \emptyset$ 2: for all k = 1, ..., K do $\mathcal{T} := \text{sampleTriplets}(\mathcal{P}, N)$ 3: $\mathcal{F} := \text{sampleFeatures}()$ 4: $\mathcal{L}^* := \infty, \theta^* := -\infty$ 5:6: 7: Select the best measure f^* from \mathcal{F} 8: with best threshold θ^* 9: 10: 11: $h_k := \{+1 \text{ if } f^*(\mathbf{x}) \le \theta^*; -1 \text{ otherwise}\}$ 12: $\mathbf{h} := \mathbf{h} \cup h_k$ 13:14: **end for** 15: return h

In BAD we use a greedy scheme like in boosting, but we now select the features that directly optimize the loss function: Algorithm 4 Feature selection algorithm **Input:** \mathcal{P} , patches with 3D point class label **Output:** $h = [h_1, ..., h_K]$ 1: $\mathbf{h} := \emptyset$ 2: for all k = 1, ..., K do $\mathcal{T} := \text{sampleTriplets}(\mathcal{P}, N)$ 3: $\mathcal{F} := \text{sampleFeatures}()$ 4: 5: $\mathcal{L}^* := \infty, \theta^* := -\infty$ for all j = 1, ..., J do 6: $\theta_j, \mathcal{L}_j := \text{findThreshold}(\mathcal{T}, f_j(\cdot), \mathcal{L}_h(\cdot))$ 7:if $\mathcal{L}_i < \mathcal{L}^*$ then 8: $\mathcal{L}^* := \mathcal{L}_i; f^* := f_i; \theta^* := \theta_i$ 9: end if 10: end for 11: $h_k := \{+1 \text{ if } f^*(\mathbf{x}) \leq \theta^*; -1 \text{ otherwise}\}$ 12: $\mathbf{h} := \mathbf{h} \cup h_k$ 13: 14: **end for** 15: return h

We studied how powerful is our training scheme to binarize a set of good features.

To this end we decided to binarize the Histogram of oriented gradients from SIFT:

We studied how powerful is our training scheme to binarize a set of good features.

To this end we decided to binarize the Histogram of oriented gradients from SIFT:

We studied how powerful is our training scheme to binarize a set of good features.

To this end we decided to binarize the Histogram of oriented gradients from SIFT:

We studied how powerful is our training scheme to binarize a set of good features.

To this end we decided to binarize the Histogram of oriented gradients from SIFT:

•We optimize **B** with gradient descent.

We studied how powerful is our training scheme to binarize a set of good features.

To this end we decided to binarize the Histogram of oriented gradients from SIFT:

•We optimize **B** with gradient descent.

•We approximate sign() by tanh()

Results: Accuracy in planar image matching

BRISK 🕶

LDB 🚧

ORB 🚧

BinBoost

LATCH-512

BAD-256

BAD-512

BiSIFT

Tfeat-m*

SIFT

BEBLID-256

LDAHash-DIF-128

BEBLID-512-M

HashSIFT-256

HashSIFT-512

DOAP-ST-256b

CDbin-256b

Hardnet

HPatches Results

■ Easy ■ Hard ■ Tough

-0-1

PCR. graffter POLITÉCNICA

LOW-LEVEL VISION FOR RESOURCE-LIMITED DEVICES

***** •

-**O**t--O

50
Results: Accuracy in planar image matching

We revisit descriptors based on Box Average Differences to propose BAD, fast and more accurate than ORB

ORB vs **BAD**

Structure from Motion in the ETH benchmark

We evaluate in a realistic SfM problem reconstructing cities with images from multiple sources (for example Flickr).

Structure from Motion in the ETH benchmark

Structure from Motion in the ETH benchmark

We evaluate in a realistic SfM problem reconstructing cities with images from multiple sources (for example Flickr).

	# Registered	# Sparse Points	# Obervations	Track Length	# Dense Points			
Madrid Metropolis (1344 images)								
ORB	457	135826	576138	4.241736	1085693			
LATCH	573	186886	759581	4.064408	1245053			
$\underline{\text{BEBLID-}256}$	549	174257	705651	4.049484	1153261			
BEBLID-512	609	199483	803847	4.029652	1191395			
<u>BAD-256</u>	600	192638	789466	4.098184	1236144			
<u>BAD-512</u>	622	189523	812243	4.285723	1268840			
RSIFT	729	286519	1136306	3.965901	1349061			
Binboost	514	143622	629993	4.386466	1129936			
LDAHash-DIF-128	592	233862	804944	3.441961	1046695			
$\underline{\text{HashSIFT-256}}$	720	298920	1075450	3.597785	1202895			
HashSIFT-512	720	305237	1160738	3.802743	1387138			
TFeat	690	262790	986470	3.753834	1233791			
HardNet	849	359610	1438909	4.001304	1436234			
CDbin-256b	769	260690	1108018	4.250328	1347656			

Stereo vision in Micro Aerial Vehicle (MAV)

Here we show BAD matching features in a non-planar scene of the EuRoC MAV Dataset. These matches can be used to compute the essential matrix of the MAV and thus its position.

https://www.flaticon.es/autores/rukanicon

Method	Size	Intel Core i7	Exynox	Snapdragon
		8750 H	Octa S	855
BRISK	512b	$14.94 \ (\pm 0.31)$	$164.75~(\pm 4.10)$	$19.38~(\pm 0.19)$
ORB	256b	$12.07 \ (\pm 0.33)$	$100.04~(\pm 1.16)$	$16.40~(\pm 0.25)$
LDB	256b	$17.48 \ (\pm 0.8)$	$161.30~(\pm 4.44)$	$27.32~(\pm 0.11)$
LATCH	512b	$101.89~(\pm 1.67)$	$1509.66~(\pm 24.35)$	$159.02~(\pm 0.24)$
<u>BEBLID</u>	256b	$1.56 \ (\pm 0.05)$	$20.04~(\pm 0.31)$	$4.75~(\pm 0.06)$
<u>BEBLID</u>	512b	$2.84~(\pm 0.07)$	$31.62~(\pm 0.26)$	$7.18~(\pm 0.21)$
BAD	256b	$1.53 (\pm 0.04)$	$20.04~(\pm 0.28)$	$4.40~(\pm 0.06)$
BAD	512b	$2.77~(\pm 0.08)$	$31.63~(\pm 0.33)$	$6.28~(\pm 0.15)$
SIFT	128f	$187.24 \ (\pm 5.28)$	$2519.86 \ (\pm 21.41)$	$572.30~(\pm 5.70)$
BinBoost	256b	$84.65~(\pm~2.28)$	$786.80~(\pm 60.82)$	$123.33~(\pm~1.73)$
BiSIFT	482b	$30.16 \ (\pm \ 0.77)$	$293.38~(\pm 38.60)$	$46.29~(\pm 3.02)$
<u>HashSIFT</u>	256b	$31.41 \ (\pm \ 0.73)$	$211.76~(\pm 2.66)$	$48.36~(\pm~1.32)$
<u>HashSIFT</u>	512b	$33.80 (\pm 1.67)$	$259.17 \ (\pm 0.62)$	$57.35~(\pm 0.42)$
Tfeat-m*	128f	$332.05~(\pm~7.41)$	$4110.61 \ (\pm 46.59)$	$1028.94 \ (\pm 59.25)$
CDbin	256b	1184.82 (± 26.24)	$23219.06~(\pm~274)$	$5363.37 \ (\pm 383.79)$
Hardnet	128f	763.08 (± 15.27)	$15640.32 \ (\pm 112.8)$	$3645.39 (\pm 274.19)$

Description times

Results: Energy consumption

BAD and BEBLID are the fastest descriptors

• We also evaluate our descriptors in terms of **energy consumption** per frame:

Mothod	\mathbf{FPS}	CPU	Estimated	Temp.	Discharge
Method		time (ms)	Power use (%)	increase (C^{o})	(mAh)
ORB	29.177	73.8	0.00028	0.00045	0.0118
BAD-256	29.970	73.4	0.00026	0.00030	0.0093
BAD-512	29.977	89.4	0.00031	0.00036	0.0104
$\underline{\text{BEBLID-512}}$	29.91	90.4	0.00031	0.00037	0.0108
SIFT	5.548	1062.1	0.00337	0.00370	0.0798
BinBoost	9.841	565.3	0.00180	0.00146	0.0408
HashSIFT-256	18.124	291.1	0.00097	0.00084	0.0217
$\underline{\text{HashSIFT-512}}$	15.630	353.3	0.00119	0.00105	0.0262
Tfeat-m*	1.569	3441.9	0.01147	0.00968	0.2663
CDbin-256b	0.319	20195	0.06708	0.05396	1.3614
Hardnet	0.459	13099	0.04335	0.03561	0.9245

State-of-art in the Accuracy vs. resource consumption curve

Index

- 0. Abstract
- 1. Introduction
- 2. Line segment detection
- 3. Full line detection and vanishing point estimation
- 4. Local feature description
- 5. Industrial results
- 6. Conclusions

Vanishing point estimation for training

Input image

TIME TINE ET EL

Image warped with VP's

The Graffter - wallview

Index

- 0. Abstract
- 1. Introduction
- 2. Line segment detection
- 3. Full line detection and vanishing point estimation
- 4. Local feature description
- 5. Industrial results
- 6. Conclusions

Publications

Suárez, I., Muñoz, E., Buenaposada, J. M., & Baumela, L. (2018, October). FSG: A statistical approach to line detection via fast segments grouping. In *2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)* (pp. 97-102). IEEE.

Suárez, I., Sfeir, G., Buenaposada, J. M., & Baumela, L. (2019, July). BELID: Boosted efficient local image descriptor. In *Iberian Conference on Pattern Recognition and Image Analysis* (pp. 449-460). Springer, Cham.

Suárez, I., Sfeir, G., Buenaposada, J. M., & Baumela, L. (2020). BEBLID: Boosted efficient binary local image descriptor. *Pattern Recognition Letters*, *133*, 366-372.

Suárez, I., Buenaposada, J. M., & Baumela, L. (2021). Revisiting Binary Local Image Description for Resource Limited Devices. *IEEE Robotics and Automation Letters*, 6(4), 8317-8324.

Suárez, I., Buenaposada, J. M., & Baumela, L. (2021). ELSED: Enhanced Line SEgment Drawing. Under review in Pattern Recognition.

Future work

- Create a Pull Request in OpenCV for: BAD, HashSIFT and ELSED
- Line segment description and matching (ETH internship)
- SLAM mobile system based on BAD
- BAD-based place recognition and image retrieval system
- Web mixed reality applications

Conclusions

• The proposed work set a **new state of the art** in the accuracy VS computational cost curve

ELSED

FSG

Efficient descriptors

Conclusions

• The proposed work set a **new state of the art** in the accuracy VS computational cost curve

FSG

Efficient descriptors

- These new methods improve the quality of high-level tasks
- They open the door to a new generation of CV application in resource-limited devices

LOW-LEVEL VISION FOR RESOURCE-LIMITED DEVICES

Bibliography

- (Hough, 1962) Hough, P. V. (1962). U.S. Patent No. 3,069,654. Washington, DC: U.S. Patent and Trademark Office.
- (Etemadi, 1992) Etemadi, A., 1992. Robust segmentation of edge data, in: Internat. Conf. on ImageProcessing and its Applications, pp. 311–314.
- (Matas, J., 2000) Matas, J., Galambos, C., & Kittler, J. (2000). Robust detection of lines using the progressive probabilistic hough transform. *Computer vision and image understanding*, 78(1), 119-137.
- (Jang, 2002) Jang, J. H., & Hong, K. S. (2002). Fast line segment grouping method for finding globally more favorable line segments. Pattern Recognition, 35(10), 2235-2247.
- (Bandera, 2006) Bandera, A., Pérez-Lorenzo, J. M., Bandera, J. P., & Sandoval, F. (2006). Mean shift based clustering of Hough domain for fast line segment detection. *Pattern Recognition Letters*, 27(6), 578-586.
- (Winder, 2007) Winder, S. A., & Brown, M. (2007, June). Learning local image descriptors. In Proc. of CVPR (pp. 1-8). IEEE.
- (Fernandes, 2008) Fernandes, L. A., & Oliveira, M. M. (2008). Real-time line detection through an improved Hough transform voting scheme. *Pattern recognition*, 41(1), 299-314.
- (VonGioi, 2010) Von Gioi, R. G., Jakubowicz, J., Morel, J. M., & Randall, G. (2008). LSD: A fast line segment detector with a false detection control. *TPAMI*, *32*(4), 722-732.
- (Akinlar, 2011) Akinlar, C., & Topal, C. (2011). EDLines: A real-time line segment detector with a false detection control. *Pattern Recognition Letters*, *32*(13), 1633-1642.

Bibliography

- (Lezama, 2014) Lezama, J., Grompone von Gioi, R., Randall, G., & Morel, J. M. (2014). Finding vanishing points via point alignments in image primal and dual domains. In *Proc. CVPR* (pp. 509-515).
- (Zhang, 2014) Zhang, L., Lu, H., Hu, X., & Koch, R. (2016). Vanishing point estimation and line classification in a Manhattan world with a unifying camera model. *IJCV*, 117(2), 111-130.
- (Lowry, 2015) Lowry, S., Sünderhauf, N., Newman, P., Leonard, J. J., Cox, D., Corke, P., & Milford, M. J. (2015). Visual place recognition: A survey. *IEEE Transactions on Robotics*, 32(1), 1-19.
- (Schroff, 2015) Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and clustering. In *Proceedings of CVPR* (pp. 815-823).
- (Almazan, 2017) Almazan, E. J., Tal, R., Qian, Y., & Elder, J. H. (2017). Mcmlsd: A dynamic programming approach to line segment detection. In Proc. CVPR (pp. 2031-2039).
- (Balntas, 2017): Balntas, V., Lenc, K., Vedaldi, A., & Mikolajczyk, K. (2017). HPatches: A benchmark and evaluation of handcrafted and learned local descriptors. In *Proc. of CVPR* (pp. 5173-5182).
- (Yang, 2017) Yang, S., & Scherer, S. (2017, May). Direct monocular odometry using points and lines. In *Proc. ICRA* (pp. 3871-3877). IEEE.
- (Zuo, 2017) Zuo, X., Xie, X., Liu, Y., & Huang, G. (2017, September). Robust visual SLAM with point and line features. In Proc. IROS (pp. 1775-1782). IEEE.
- (Rajaei, 2018) Rajaei, B., & von Gioi, R. G. (2018). Gestaltic grouping of line segments. *Image Processing On Line*, *8*, 37-50.

Bibliography

- (Hu, 2019) Hu, Y., Hugonot, J., Fua, P., & Salzmann, M. (2019). Segmentation-driven 6d object pose estimation. In Proc. of CVPR (pp. 3385-3394).
- (Zhou, 2019) Zhou, Y., Qi, H., & Ma, Y. (2019). End-to-end wireframe parsing. In *Proc. ICCV* (pp. 962-971).
- (Wang, 2020) Wang, S., Yu, L., Li, C., Fu, C. W., & Heng, P. A. (2020, August). Learning from extrinsic and intrinsic supervisions for domain generalization. In Proc. Of *ECCV* (pp. 159-176). Springer, Cham.
- (Xue, 2020) Xue, N., Wu, T., Bai, S., Wang, F., Xia, G. S., Zhang, L., & Torr, P. H. (2020). Holistically-attracted wireframe parsing. In Proc. of CVPR (pp. 2788-2797).
- (Dai, 2021) Dai, X., Yuan, X., Gong, H., & Ma, Y. (2021). Fully Convolutional Line Parsing. *arXiv preprint arXiv:2104.11207*.
- (Xu, 2021) Xu, Y., Xu, W., Cheung, D., & Tu, Z. (2021). Line segment detection using transformers without edges. In *Proc. of CVPR* (pp. 4257-4266).
- (Zhang, 2021) Zhang, H., Luo, Y., Qin, F., He, Y., & Liu, X. (2021). ELSD: Efficient Line Segment Detector and Descriptor. In Proc. of ICCV (pp. 2969-2978).
- Icons from:
 - <u>https://www.flaticon.es/autores/rukanicon</u>
 - https://pin.it/1bleeEw

