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Computer Vision is ubiquitous
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Tablets & Smartphones

Vacuum robots

Smart glasses

Drones



Accuracy vs resources curve
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CV opportunities:

▪ IoT

▪ Drones

▪ Robotics

▪ Smartphones

Limited resources:
◦ Restricted-CPU, no-GPU

◦ Drones: Fly time

◦ Smartphones: App. consumption

◦ AR glasses: Time of usage and heat



Mixed Reality (MR) in the street

Visual navigation guidelines Accurate location-based information
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Mixed Reality (MR) in the street
Successful examples in recent years:

Pokemon Go

Google Street View
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The Graffter: Urban Mixed Reality
M I X E D  R E A L I T Y  I N  T H E  B U I L D I N G  FA Ç A D E S
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The Graffter: Urban Mixed Reality
We face the image matching problem in mobile devices
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Urban MR Challenges
It seems very easy!
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Urban MR Challenges: Building façade 
repeatability

Where is this window?

LOW-LEVEL VISION FOR RESOURCE-LIMITED DEVICES 12

We need extra knowledge to
locate repetitive patterns



Urban MR Challenges: Perspective and lighting



Urban MR Challenges: Lack of texture

Texture-less building Glazed surfaces
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Localization pipeline: Local features
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Localization pipeline: Local features
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Blobs

Corners

Line segments

Simultaneous Localization And Mapping (SLAM) Place recognition (Lowry 2016)

Structure from Motion (SfM) (Agarwal, 2009) Obj. pose estimation (Hu 2019)



In this presentation…
1. The Graffter S.L and the industry, match corners to 

recognize buildings
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1. The Graffter S.L and the industry, match corners to 
recognize buildings

▪ There is room for improvements in the performance of this 
matching → Improve the matching techniques for corner

2. Some scenes have nearly no corners, only lines
▪ Matching lines is harder than corners, more repetitiveness and lack 

of texture

▪ Instead of failing with repetitiveness, we take advance of it → We 
make contributions to a matching-free pipeline:

Line segment 
detection

Full line detection by 
segment grouping

Vanishing point 
estimation
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Lines and segments: definition
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Segments Lines



Line segment detection with Hough Transform
▪ Hough Transform (HT) (Hough, 1962)

▪ Probabilistic Hough Transform (Matas, J., 2000)

▪ Kernel-Based Hough Transform (Fernandes, 2008)

▪ MCMLSD (Almazan, 2017)
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Wireframe parsing 
approaches
They predict the line segment 
endpoints in the borders of relevant 
objects:

◦ Human-labeled data

◦ Limited to home scenes

▪ HAWP (Xue, 2020)

▪ LETR (Xu, 2021) 

▪ ELSD (Zhang, 2021) 

▪ F-Clip (Dai, 2021) 
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(Zhou2019)



General purpose line segment detectors
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(Desolneux, 2008) (Von Gioi, 2008) (Akinlar, 2011)

(Etemadi, 1992) (Hough, 1962)



Edge 
Drawing
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Akinlar, C., & Topal, C. (2011). EDLines: A real-time line segment detector with a false detection control. Pattern Recognition Letters, 32(13), 1633-1642.



Edge 
Drawing
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Akinlar, C., & Topal, C. (2011). EDLines: A real-time line segment detector with a false detection control. Pattern Recognition Letters, 32(13), 1633-1642.



Enhanced Line SEgment Drawing (ELSED)
In ELSED we propose to merge:
◦ 4) Edge drawing

◦ 5) Line segment fitting
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Suárez, I., Buenaposada, J. M., & Baumela, L. (2021). ELSED: Enhanced Line SEgment Drawing. Submitted to Pattern Recognition

Fit segments while 
drawing!



Enhanced Line SEgment Drawing (ELSED)
Because we are merging both steps, we can take advantage of it to improve the drawing process
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Enhanced Line SEgment Drawing (ELSED)
Because we are merging both steps, we can take advantage of it to improve the drawing process
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Horizontal current 
edge pixel
Go Right

Diagonal case with
vertical edge

Go Right



Enhanced Line SEgment Drawing (ELSED)
Because we are merging both steps, we can take advantage of it to improve the drawing process
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Horizontal current 
edge pixel
Go Right

Diagonal case with
vertical edge

Go Right

Edge Drawing

Diagonal case with
vertical edge

Go Right

Enhanced Edge Drawing (EED)Common case

Line direction



ELSED: Jump over discontinuities
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Line segment validation
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True positive detections False positive detectionsGround Truth Detections

▪ We sort the detected segments based on the number of pixels with an angular error < Tvalid

▪ Discarding the worst detections



Results: Line segment detection
ELSED obtains the best results among fast detectors, being competitive with slow methods
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Efficient approaches
Non-efficient approaches



Results: Repeatability
The previous metric depends on the hand-labeled segments of the scene.
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Viewpoint changes

Lighting changes



ELSED: The fastest detector
Moreover, ELSED is extremely fast

This also provides state-of-the-art results in the accuracy-vs-speed curve. In fact, ELSED is the fastest 
detector
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Vanishing Point Estimation: Definition
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“A vanishing point is a point on the image 
plane where the two-dimensional perspective 
projections of mutually parallel lines in three-
dimensional space appear to converge”

pinterest.es/pin/310044755583385782

They arise in the so-called: 
Manhattan World



Vanishing Point Estimation
The camera position in the world is defined by a translation and a rotation
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The rotation can be directly estimated 
from the vanishing points



Vanishing Point Estimation: Other applications
▪ Plane rectification via partial inertial parameters

▪ Single view reconstruction
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Previous work: Grouping lines approaches
▪ Heuristic based:

▪ (Jang 2002) Fast line segment grouping method for finding globally more favorable line segments.

▪ (Zuo, 2017) Robust visual SLAM with point and line features

▪ Group two segments if some distances from their middle and end points are small.

▪ (Yang, 2017) Direct monocular odometry using points and lines

▪ Organize the candidates into buckets with similar middle point locations and orientations.
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Previous work: Grouping lines approaches
▪ Heuristic based:

▪ (Jang 2002) Fast line segment grouping method for finding globally more favorable line segments.

▪ (Zuo, 2017) Robust visual SLAM with point and line features

▪ Group two segments if some distances from their middle and end points are small.

▪ (Yang, 2017) Direct monocular odometry using points and lines

▪ Organize the candidates into buckets with similar middle point locations and orientations.

▪ (Bandera, 2006) Mean shift based clustering of Hough domain for fast line segment detection.

▪ Probabilistic models use the a contrario methodology:
▪ (Lezama, 2014) Finding Vanishing Points via Point Alignments in Image Primal and Dual Domains

▪ (Rajaei, 2018) Gestaltic grouping of line segments
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FSG: A statistical approach to line 
detection via fast segments grouping

LINE HYPOTHESIS GENERATION LINE VALIDATION CRITERIA
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Suárez, I., Muñoz, E., Buenaposada, J. M., & Baumela, L. (2018, October). FSG: A statistical approach to line detection via fast segments grouping. 
In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 97-102). IEEE.



FSG: Line hypothesis generation
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FSG: Line hypothesis generation

LOW-LEVEL VISION FOR RESOURCE-LIMITED DEVICES 50



FSG: Line hypothesis generation
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Initial line segments (VonGioi, 2010) Resulting lines



FSG: Statistical Validator
▪ We propose a statistical validator to check whether a group of segments is well aligned
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Segments 
length

Closeness

Well-aligned

The validation criterion should 
consider



FSG: Statistical Validator
▪ In an image with s segments. We evaluate the probability that a set of c segments from H fall 

into B.
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FSG: Statistical Validator
▪ In an image with s segments. We evaluate the probability that a set of c segments from H fall 

into B.

▪ Product of the probability of each segment to fall into B: 
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First
endpoint

Second
endpoint



Robust Vanishing point from lines

▪ Accurate vanishing point estimator (Lezama, 2014) 

▪ Fast vanishing point estimator (based on RANSAC) (Zhang, 2016)
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Evaluation of horizon line estimation
We evaluate the estimated vanishing points with the standard metric Horizon line error:
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Evaluation of horizon line estimation
We evaluate the estimated vanishing points with the standard metric Horizon line error:
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Ground Truth
Horizon line

Estimated
Horizon line

Horizon line error

Horizon line error



Quantitative Results
▪ Segments Grouped at 6 ms/frame (Intel core i7) with state-of-the-art accuracy

▪ Cumulative error distribution:
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Local Segments Detectors

LSD ELSED

36.51 ms 5.38 ms

Segments Grouping Algorithms

FSG (Lezama 2014)

5.89 ms 14961 ms

Global Segment Detectors

PPTH MCMLSD

21.63 ms 4686 ms



Qualitative results (Smartphone)
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Previous work: SIFT Descriptor
▪ SIFT (Lowe, 1999) is the most widely used descriptor:
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Image gradients



Previous work: SIFT Descriptor
▪ Uses the histograms of gradients in a fixed grid:
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Image gradients



Previous work: SIFT Descriptor
▪ Uses the histograms of gradients in a fixed grid:
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Image gradients Gradient orientation histograms:
- Fixed grid: 2 x 2
- Fixed scale: The cell size
- Dense: Uses all patch pixels



Previous work: Inefficient learnt descriptors
Instead of fixing the grid, the scale and the gradient as information, this can be learnt:
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DLCO – VGG
(Simonyan, 2014)

BinBoost & FP-Boost
(Trzcinski, 2015)

Deep Learning descriptors
Tfeat, L2Net, DOAP, 

HardNet, SOSNet, CDbin



Previous work: Efficient descriptors
Efficient alternatives to SIFT are based 
in approximate gradient by comparing 
pixel intensities
◦ Sparse approach → Fast
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Previous work: Efficient descriptors
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1

Computed descriptor



Previous work: Efficient descriptors
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Previous work: Efficient descriptors
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Previous work: Efficient descriptors
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Computed descriptor

BRISK



Efficient descriptors comparison
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Leutenegger, S., Chli, M., & Siegwart, R. (2011). BRISK: Binary robust invariant scalable keypoints. In ICCV (pp. 2548-2555).



Efficient descriptors comparison
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Calonder, M., Lepetit, V., Strecha, C., & Fua, P. (2010, September). Brief: Binary robust independent elementary features. In ECCV (pp. 778-792).



Efficient descriptors comparison
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Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. R. (2011, November). ORB: An efficient alternative to SIFT or SURF. In ICCV (Vol. 11, No. 1, p. 2).



Efficient descriptors: Measurement function
The proposed measurement functions learn not only the description pattern but also the 
description scale
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Efficient descriptors: Measurement function
The Thresholded Average Box measure that learns both:
◦ Descriptor Pattern

◦ Descriptor Measurements Scale
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Suárez, I., Sfeir, G., Buenaposada, J. M., & Baumela, L. (2019, July). BELID: Boosted efficient local image 
descriptor. In Iberian Conference on Pattern Recognition and Image Analysis (pp. 449-460). Springer, Cham.



Thresholded Average Box measure
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The measurement function is the difference of the average gray level in two 
boxes

Patch to describe



Thresholded Average Box measure
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Thresholded Average Box measure
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Thresholded Average Box measure
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The measurement function is the difference of the average gray level in two 
boxes



Thresholded Average Box measure
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The measurement function is the difference of the average gray level in two 
boxes



Thresholded Average Box measure
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The measurement function is the difference of the average gray level in two 
boxes



Thresholded Average Box measure
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Each measurement function is thresholded to obtain the weak-descriptors.



How to select a good set 
of measurement 
functions?
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Distance is description space: Similarity learning

LOW-LEVEL VISION FOR RESOURCE-LIMITED DEVICES 84

Set of patches
Description space

Winder, S. A., & Brown, M. (2007, June). Learning local image descriptors. In Proc. CVPR (pp. 1-8)



How to select a good set of measurement 
functions?
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BELID BEBLID BAD & HashSIFT
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BELID BEBLID BAD & HashSIFT

Suárez, I., Sfeir, G., Buenaposada, J. M., & Baumela, L. (2019, July). BELID: Boosted efficient local image 
descriptor. In Iberian Conference on Pattern Recognition and Image Analysis (pp. 449-460). Springer, Cham.



BELID: Boosting training process
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Set of patches
Description space

+1

+1
-1

-1

Binary classification
problem

+1

-1



BELID: Boosting training process
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+1

+1 -1

-1

▪ Training on Brown Balanced Dataset (Winder, 2007).   We define our descriptors as:



BELID: Boosting training process
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+1

+1 -1

-1

▪ Training on Brown Balanced Dataset (Winder, 2007).   We define our descriptors as:

▪ And we train in a binary classification problem:

-1 +1-1



  

  

  

  

  

  

The Boosting framework: 1st WL
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The Boosting framework: 1st WL
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The Boosting framework: 2nd WL
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The Boosting framework: 2nd WL
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The Boosting framework: 3rd WL
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The Boosting framework
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BELID: Result of the training process
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Selected measurement 
regions

Heatmap of the weighted 
measurement regions

Training results for 512 weak-learners



BELID: Final projection
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Linear Transformation:
◦ Give more weight to the best h(x).

◦ Models the correlation between the h’s.



BELID Evaluation results: Hpatches
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Hpatches is a multitask dataset of patches: Results for the verification task:

(Balntas, 2017)



How to select a good set of measurement 
functions?
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BELID BEBLID BAD & HashSIFT

Suárez, I., Sfeir, G., Buenaposada, J. M., & Baumela, L. (2020). BEBLID: Boosted efficient binary local image 
descriptor. Pattern Recognition Letters, 133, 366-372.



BEBLID: Descriptor binarization

  

  

  

  

 

 

 

LOW-LEVEL VISION FOR RESOURCE-LIMITED DEVICES 100

To speed up the description and 
binarize the result, we remove B
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BEBLID: New WL threshold search
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▪ How to find the optimal threshold       ?
▪ Let's plot the values of the measurement function
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▪ How to find the optimal threshold       ?
▪ Let's plot the values of the measurement function

       



BEBLID: Learning an unbalanced problem
Image matching and Patch retrieval are highly unbalanced problems:
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We change the training data set balance → 20% positive patch pairs, 80% negatives



Evaluation metric: Image matching mAP
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P: 1/1

P: 1/2

P: 2/3

P: 3/4

P: …/N

Transformation (H)

Balntas, V., Lenc, K., Vedaldi, A., & Mikolajczyk, K. (2017). HPatches: A benchmark and evaluation of handcrafted and learned local descriptors. In Proceedings of CVPR (pp. 5173-5182).
Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE TPAMI, 27(10), 1615-1630.
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BEBLID: HPatches results
We improve our BELID results in Matching and retrieval
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Description 
times
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BEBLID: OpenCV
T HE DESCR IPTOR  HA S  BEEN  A DDED TO OPEN CV!
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How to select a good set of measurement 
functions?
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BELID BEBLID BAD & HashSIFT

Suárez, I., Buenaposada, J. M., & Baumela, L. (2021). Revisiting Binary Local Image Description for Resource 
Limited Devices. IEEE Robotics and Automation Letters, 6(4), 8317-8324.



Choosing loss function and margin
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Wrongly classified example
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Hinge loss is more robust!

Wrongly classified example



Choosing loss function and margin
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Outliers gain weight 
exponentially

Hinge (contrastive) loss 
is more robust

Wrongly classified example



Triplet ranking loss VS contrastive loss
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Contrastive pairwise loss

Description space

+1

+1

-1

-1

• Pull
• Push
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Contrastive pairwise loss Triplet ranking loss (TRL)

Description space
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Triplet ranking loss VS contrastive loss
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Contrastive pairwise loss

Description space

Triplet ranking loss (TRL)

Description space

+1

+1

-1

-1

• Pull
• Push



Hard Negative Mining (HNM) and anchor swap
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Description space

Triplet ranking loss (TRL)▪ Select meaningful triplets is very important!



Hard Negative Mining (HNM) and anchor swap
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Description space

Triplet ranking loss (TRL)▪ Select meaningful triplets is very important!

▪ We choose the hardest negative in a batch of 
256 samples.
▪ Distance: Hamming Norm of the current 

descriptors -> Progressively harder triplets

▪ Anchor swap: if the negative is closer to the 
positive than to the anchor, we swap them

(Schroff, 2015)



BAD Overview
In BAD we use a greedy scheme like in 
boosting, but we now select the 
features that directly optimize the loss 
function:
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In BAD we use a greedy scheme like in 
boosting, but we now select the 
features that directly optimize the loss 
function:
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BAD Overview
In BAD we use a greedy scheme like in 
boosting, but we now select the 
features that directly optimize the loss 
function:
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Find the threshold that minimizes the loss
We propose a general algorithm to select a threshold for the Box Average Difference (BAD) 
measure. It supports any feature selection loss function 
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We propose a general algorithm to select a threshold for the Box Average Difference (BAD) 
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HashSIFT
We studied how powerful is our training scheme to binarize a set of good  features.

To this end we decided to binarize the Histogram of oriented gradients from SIFT:
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To this end we decided to binarize the Histogram of oriented gradients from SIFT:

▪We optimize B with gradient descent.

HashSIFT
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HashSIFT
We studied how powerful is our training scheme to binarize a set of good  features.

To this end we decided to binarize the Histogram of oriented gradients from SIFT:

▪We optimize B with gradient descent.

▪We approximate sign( ) by tanh( )

LOW-LEVEL VISION FOR RESOURCE-LIMITED DEVICES 147



Results: Accuracy in planar image matching
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Results: Accuracy in planar image matching
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Structure from Motion in the ETH benchmark
We evaluate in a realistic SfM problem reconstructing cities with images from multiple sources 
(for example Flickr).
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Structure from Motion in the ETH benchmark

LOW-LEVEL VISION FOR RESOURCE-LIMITED DEVICES 151

Madrid Metropolis reconstruction (BAD-256)



Structure from Motion in the ETH benchmark
We evaluate in a realistic SfM problem reconstructing cities with images from multiple sources 
(for example Flickr).
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Stereo vision in Micro Aerial Vehicle (MAV)
Here we show BAD matching features in a non-planar scene of the EuRoC MAV
Dataset. These matches can be used to compute the essential matrix of the
MAV and thus its position.
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Description 
times
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Results: Energy consumption
▪ BAD and BEBLID are the fastest descriptors

▪ We also evaluate our descriptors in terms of energy consumption per frame:
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State-of-art in the Accuracy vs. resource 
consumption curve
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Vanishing point estimation for training
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Input image Image warped with VP’s



The Graffter - wallview
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Future work
▪ Create a Pull Request in OpenCV for: BAD, HashSIFT and 

ELSED

▪ Line segment description and matching (ETH internship)

▪ SLAM mobile system based on BAD

▪ BAD-based place recognition and image retrieval system

▪ Web mixed reality applications
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Conclusions
▪ The proposed work set a new state of the art in the accuracy VS computational cost curve
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Conclusions
▪ The proposed work set a new state of the art in the accuracy VS computational cost curve

▪ These new methods improve the quality of high-level tasks

▪ They open the door to a new generation of CV application in resource-limited devices
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Thanks!
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