BELID: Boosted Efficient Local Image Descriptor

lago Suárez, Ghesn Sfeir, José M. Buenaposada, Luis Baumela

Computer Vision and Aerial Robotics Group

Motivation

BELID: Boosted Efficient Local Image Descriptor

2

Motivation

Input Image

Pattern

https://www.github.com/artoolkit/artoolkit5

POLITÉCNICA

Input Image

Pattern

Matching of the image features with the pattern features

We first need to detect feature like:

Other applications:

Input image

Structure from Motion (Agarwal, 2009)

SLAM

robots.ox.ac.uk/~vgg/blog/mapping-environments-with-deep-networks.html

Previous Work: SIFT Descriptor

SIFT(Lowe, 1999) is the most widely used descriptor:

Previous Work: SIFT Descriptor

SIFT(Lowe, 1999) is the most widely used descriptor:

Image gradients

Previous Work: SIFT Descriptor

Uses the histograms of gradients in a fixed grid:

Image gradients

Gradient orientation histograms:

- Fixed grid: 2 x 2
- Fixed scale: The cell size
- **Dense**: Uses all patch pixels

Previous Work: Inefficient learnt descriptors

Instead of fixing the grid, the scale and the gradient as information, this can be learnt:

DLCO - VGG (Simonyan, 2014)

BinBoost & FP-Boost (Trzcinski, 2015)

Deep Learning descriptors

Efficient alternatives to SIFT are based in **aproximate gradient by comparing pixel intensities**

- Sparse approach \rightarrow Fast

Computed Descriptor

Computed Descriptor

Computed Descriptor

Leutenegger, S., Chli, M., & Siegwart, R. (2011). BRISK: Binary robust invariant scalable keypoints. In 2011 IEEE international conference on computer vision (ICCV) (pp. 2548-2555). leee.

Calonder, M., Lepetit, V., Strecha, C., & Fua, P. (2010, September). Brief: Binary robust independent elementary features. In European conference on computer vision (pp. 778-792). Springer, Berlin, Heidelberg.

Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. R. (2011, November). ORB: An efficient alternative to SIFT or SURF. In ICCV (Vol. 11, No. 1, p. 2).

BELID is a efficient descriptor that learns both:

• Descriptor Pattern

21

• Descriptor Measurements Scale

The key of BELID: A new measurement function

The function is the difference of the average gray level in two boxes

 \mathbf{X}

Original Patch to describe

The function is the difference of the average gray level in two boxes

 \mathbf{X}

Original Patch to describe

The function is the difference of the average gray level in two boxes

The function is the difference of the average gray level in two boxes

The function is the difference of the average gray level in two boxes

The function is the difference of the average gray level in two boxes

The function is the **thresholded** difference of the average gray level in two boxes.

Linear Transformation:

- Give more weight to the best h(x).
- Models the correlation between the h's.

How to select a good set of measurement functions? Boosting!

The training process

• Training on Brown Balanced Dataset (Winder, 2007) of patch pairs where labels are:

- ◆ +1: Patches from the same 3D point
- ◆ -1: Patches from different 3D point

BELID in the Boosting Framework

Therefore we define our descriptors as:

$$H: X \rightarrow \left[\sqrt{\alpha_1}h_1(\mathbf{x}), \dots, \sqrt{\alpha_M}h_M(\mathbf{x})\right]$$
$$\longrightarrow 0,34 \quad -0.12 \quad \dots \quad -0.0065$$

And we train for a binary classification problem:

 $C: (X, Y) \rightarrow sign \left(\alpha_{1}c_{1}(\mathbf{x}, \mathbf{y}) + \ldots + \alpha_{K}c_{K}(\mathbf{x}, \mathbf{y}) \right) \rightarrow \pm 1$ +1/-1 $c_{i}(\mathbf{x}, \mathbf{y}) = h_{i}(\mathbf{x}) \cdot h_{i}(\mathbf{y})$ -1 = -1 + 1

BELID in the Boosting Framework (first WL)

POLITÉCN

BELID in the Boosting Framework (second WL)

Training dataset

 Find the weak-learner h that maximizes the Youden's index.

2. Calculate the error

$$\epsilon_1 = \sum_{\substack{i=1\\c_1(\mathbf{x}_i, \mathbf{y}_i) \neq l_i}} w_{i,1}$$

3. Choose the **h** weight: $\alpha_1 = \frac{1}{2} \ln \left(\frac{1-\epsilon_1}{\epsilon_1} \right)$

4. Re-weight the samples: $w_{i,2} = w_{i,1}e^{-l_i\alpha_1c_1(\mathbf{x}_i,\mathbf{y}_i)}$

BELID in the Boosting Framework (n-th WL)

Result of the training process

Selected measurement regions

heatmap of the weighted meassurement regions

Training results for 512 weak-learners

Evaluation Results

Evaluation Results: Brown Datasets

Evaluation results in the problem of binary classification: ROC Curves

Evaluation Results: Hpatches

Hpatches is a multitask dataset of patches:

(Balntas, 2017)

Results for the verification task:

Evaluation Results: Mikolajczyk Dataset

Mikolajczyk(Mikolajczyk, 2003) dataset is a set of 48 images widely used in feature matching.

Results (Times)

Times are quite important for us!

	Size	Intel Core i7	Exynox Octa
SIFT	128f	$22.22 \mathrm{\ ms}$	$163.2 \mathrm{\ ms}$
ORB	256b	$0.44 \mathrm{\ ms}$	$6.49 \mathrm{\ ms}$
LBGM	64f	$19.77 \mathrm{\ ms}$	$64.24 \mathrm{\ ms}$
BinBoost	256b	$12.57 \mathrm{\ ms}$	$42.39 \mathrm{\ ms}$
BELID-128	128f	$3.08 \mathrm{\ ms}$	$17.13 \mathrm{\ ms}$
BELID-U	512f	0.41 ms	$2.54 \mathrm{\ ms}$

https://giphy.com/gifs/drone-vfZ7EwPyLnnRm

Implementation

- Training code →
 Production code →
 GerenCV
 - Parallel code compatible with cv::Feature2D
 - Only one integral image computed from the input image
 - Not rectified patches, measures computed using the integral image
 - Optimized matrix multiplication

Conclusions and Future Work

Conclusions

- BELID learns both, description pattern and scale
- ◆ As accurate as SIFT, as fast as ORB!
- BELID is a good compromise between speed and accuracy

• Future work

- Binarize BELID
- Train BELID for unbalanced problems
- Integrate BELID in high-level applications

BELID: Boosted Efficient Local Image Descriptor

lago Suárez, Ghesn Sfeir, José M. Buenaposada, Luis Baumela

Computer Vision and Aerial Robotics Group

